Search results

1 – 10 of 25
Article
Publication date: 20 July 2010

M.Q. Al‐Odat

The purpose of this paper is to conduct a full three‐dimensional numerical analysis to simulate the thermal behavior of high speed steel (HSS) cutting tool, with temperature…

Abstract

Purpose

The purpose of this paper is to conduct a full three‐dimensional numerical analysis to simulate the thermal behavior of high speed steel (HSS) cutting tool, with temperature dependent thermal properties, in dry machining with embedded heat pipe (HP), and investigate the effects of HP installation, variable thermal properties, generated heat flux and cutting speed.

Design/methodology/approach

The heat transfer equation used to predict cutting tool temperature is parabolic partial differential equation. Grid points including independent variables are initially formed in solution of partial differential equation by finite element method (FEM). In this paper, one‐dimensional heat transfer equation with variable thermophysical properties is solved by FEM.

Findings

In this paper, the heat transfer equation in cutting tool is solved for variable thermophysical properties and the temperature field and temperature history are obtained. Variable thermophysical properties are considered to display the temperature fields in the cutting tool.

Originality/value

A full three‐dimensional numerical analysis is conducted to simulate the thermal behavior of HSS cutting tool, with temperature dependent thermal properties, in dry machining with embedded HP. The heat conduction equation is solved by FEM analysis.

Details

Engineering Computations, vol. 27 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 August 2013

Mohammed Q. Al‐Odat

In this study, the purpose was to introduce two‐dimensional hyperbolic heat conduction equations in order to simulate the fast precooling process of a cylindrically shaped food…

Abstract

Purpose

In this study, the purpose was to introduce two‐dimensional hyperbolic heat conduction equations in order to simulate the fast precooling process of a cylindrically shaped food product with internal heat generation. A modified model for internal heat generation due to respiration in the food product was proposed to take the effect of relaxation time into account. The obtained governing equations were solved numerically using an efficient finite difference technique. The influence of Biot number and heat generation parameters on thermal characteristics was examined and discussed. The results based on hyperbolic model were compared with the classical parabolic heat diffusion model. The present numerical code was validated via comparison with analytical solution and a good agreement was found.

Design/methodology/approach

The obtained governing equations were solved numerically using an efficient finite difference technique.

Findings

The influence of Biot number and heat generation parameters on thermal characteristics was examined and discussed. The results based on hyperbolic model were compared with the classical parabolic heat diffusion model. The present numerical code was validated via comparison with analytical solution and a good agreement was found.

Originality/value

Two‐dimensional analysis of fast precooling of cylindrical food product based on hyperbolic heat conduction model has not been investigated yet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 April 2006

O.M. Haddad and M.Q. Al‐Odat

This study seeks to focus on the annular flow between rectangular and equilateral‐triangular ducts under all possible arrangements. The aim of this work is to obtain accurate…

Abstract

Purpose

This study seeks to focus on the annular flow between rectangular and equilateral‐triangular ducts under all possible arrangements. The aim of this work is to obtain accurate prediction of the friction factor of this flow using high‐order finite element method.

Design/methodology/approach

Steady and fully developed laminar flow of incompressible Newtonian fluid in an annulus of variable cross‐sectional geometry is investigated numerically. Accurate prediction of the friction factor of this flow was obtained using high‐order finite element method.

Findings

The results were in agreement with already published findings in the literature. It was found that a higher annular area ratio will lead to a monotonic increase in fRe value in the case of regular annuli, and will lead to an increase followed by a decrease in fRe value in the case of irregular annuli. Also, it was, found that irregular annuli have lower fRe value than regular annuli, and that the square‐in‐triangle case has the lowest fRe value, whereas the square‐in‐square case has the highest fRe value.

Originality/value

Accurate prediction of the friction factor of the laminar flow in irregular annuli was obtained. Also, the obtained results can be utilized to optimize the annular geometries under consideration. In addition, the obtained results can lead to the design of more efficient heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 16 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2019

Tomasz Sobota

The knowledge of the heat transfer coefficient is important for the proper design of heat exchangers as well as for the determination of the working medium outlet temperatures…

Abstract

Purpose

The knowledge of the heat transfer coefficient is important for the proper design of heat exchangers as well as for the determination of the working medium outlet temperatures. This paper aims to present a method of simultaneous determination of coefficients in correlation formulas for the Nusselt number on both sides of the heat transfer surface.

Design/methodology/approach

The idea of the developed method is based on determining such a values of the coefficients in Nusselt number correlations that fulfill the condition of equality between the measured and calculated temperature at the outlet of heat exchanger in terms of least squares method. To test the proposed method, a special experimental installation was built. The heat transfer in helically coiled tube-in-tube heat exchanger was examined for the wide range of temperature changes and volumetric flow rates of working fluid.

Findings

The simulation results were validated with an experimental data. The results show that the heat transfer coefficient of the counter-current is higher than the co-current flow in helically coiled heat exchanger. This phenomenon can be beneficial particularly in the laminar flow regime.

Research limitations/implications

The correlation for the Nusselt number as a function of the Reynolds and Prandtl numbers for hot and cold liquid was obtained with the least squares method for the experimental data.

Practical implications

The presented method allows for the simultaneous determination of heat transfer coefficient on both sides of the wall without the necessity of indirect calculation of the overall heat transfer coefficient. The presented method can be used in the thermal design of various type heat exchangers.

Originality/value

This work presents the new methodology of determination correlations for the helically coiled tube-in-tube heat exchanger for co-current and counter-current arrangement, which can be used in thermal design.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 January 2024

Ashok K. Barik, Swetapadma Rout, Jnana Ranjan Senapati and M.M. Awad

This paper aims at studying numerically the entropy generation of nanofluid flowing over an inclined sheet in the presence of external magnetic field, heat source/sink, chemical…

Abstract

Purpose

This paper aims at studying numerically the entropy generation of nanofluid flowing over an inclined sheet in the presence of external magnetic field, heat source/sink, chemical reaction along with slip boundary conditions imposed on an impermeable wall.

Design/methodology/approach

A suitable similarity transformation technique has been used to convert the coupled nonlinear partial differential equations to ordinary differential equations (ODEs). The ODEs are then solved simultaneously using the finite difference method implemented through an in-house computer program. The effects of different controlling parameters such as magnetic parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter, Reynolds number, Brinkmann number, Prandtl number, velocity slip parameter, temperature slip parameter and the concentration slip parameter on the entropy generation and Bejan number have been discussed comprehensively through the relevant physical insights for the first time.

Findings

The relative strengths of the irreversibilities due to heat transfer, fluid friction and the mass diffusion arising due to the change in each of the controlling variables have been delineated both in the near-wall and far-away-wall regions, which may be helpful for a better understanding of the thermo-fluid dynamics of nanofluid in boundary layer flows. The numerical results obtained from the present study have also been validated with results published in open literature.

Originality/value

The effects of different controlling parameters such as magnetic parameter, radiation parameter, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter, Reynolds number, Brinkmann number, Prandtl number, velocity slip parameter, temperature slip parameter and the concentration slip parameter on the entropy generation and Bejan number have been discussed comprehensively through the relevant physical insights for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 August 2019

R. Ellahi, Sadiq M. Sait, N. Shehzad and Z. Ayaz

The purpose of this paper is to present the investigation of the pressure-driven flow of aluminum oxide-water based nanofluid with the combined effect of entropy generation and…

296

Abstract

Purpose

The purpose of this paper is to present the investigation of the pressure-driven flow of aluminum oxide-water based nanofluid with the combined effect of entropy generation and radiative electro-magnetohydrodynamics filled with porous media inside a symmetric wavy channel.

Design/methodology/approach

The non-linear coupled differential equations are first converted into a number of ordinary differential equations with appropriate transformations and then analytical solutions are obtained by homotopic approach. Numerical simulation has been designed by the most efficient approach known homotopic-based Mathematica package BVPh 2.0 technique. The long wavelength approximation over the channel walls is taken into account. The obtained analytical results have been validated through graphs to infer the role of most involved pertinent parameters, whereas the characteristics of heat transfer and shear stress phenomena are presented and examined numerically.

Findings

It is found that the velocity profile decreases near to the channel. This is in accordance with the physical expectation because resistive force acts opposite the direction of fluid motion, which causes a decrease in velocity. It is seen that when the electromagnetic parameter increases then the velocity close to the central walls decreases whereas quite an opposite behavior is noted near to the walls. This happens because of the combined influence of electro-magnetohydrodynamics. It is perceived that by increasing the magnetic field parameter, Darcy number, radiation parameter, electromagnetic parameter and the temperature profile increases, and this is because of thermal buoyancy effect. For radiation and electromagnetic parameters, energy loss at the lower wall has substantial impact compared to the upper wall. Residual error minimizes at 20th order iterations.

Originality/value

The proposed prospective model is designed to explore the simultaneous effects of aluminum oxide-water base nanofluid, electro-magnetohydrodynamics and entropy generation through porous media. To the best of author’s knowledge, this model is reported for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2015

Martin Joseph Guillot and Steve C McCool

The purpose of this paper is to investigate the effect of numerical boundary condition implementation on local error and convergence in L2-norm of a finite volume discretization…

Abstract

Purpose

The purpose of this paper is to investigate the effect of numerical boundary condition implementation on local error and convergence in L2-norm of a finite volume discretization of the transient heat conduction equation subject to several boundary conditions, and for cases with volumetric heat generation, using both fully implicit and Crank-Nicolson time discretizations. The goal is to determine which combination of numerical boundary condition implementation and time discretization produces the most accurate solutions with the least computational effort.

Design/methodology/approach

The paper studies several benchmark cases including constant temperature, convective heating, constant heat flux, time-varying heat flux, and volumetric heating, and compares the convergence rates and local to analytical or semi-analytical solutions.

Findings

The Crank-Nicolson method coupled with second-order expression for the boundary derivatives produces the most accurate solutions on the coarsest meshes with the least computation times. The Crank-Nicolson method allows up to 16X larger time step for similar accuracy, with nearly negligible additional computational effort compared with the implicit method.

Practical implications

The findings can be used by researchers writing similar codes for quantitative guidance concerning the effect of various numerical boundary condition approximations for a large class of boundary condition types for two common time discretization methods.

Originality/value

The paper provides a comprehensive study of accuracy and convergence of the finite volume discretization for a wide range of benchmark cases and common time discretization methods.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2018

Najib Hdhiri and Brahim Ben Beya

The purpose of this study is to investigate the effects of heat generation or absorption on heat transfer and fluid flow within two- and three-dimensional enclosure for…

78

Abstract

Purpose

The purpose of this study is to investigate the effects of heat generation or absorption on heat transfer and fluid flow within two- and three-dimensional enclosure for homogeneous medium filled with different metal liquid. Numerical results are presented and analyzed in terms of fluid flow, thermal field structures, as well as average Nusselt number profiles over a wide range of dimensionless quantities, Grashof number (Gr) (104 and 105), SQ (varied between −500 to 500) and Prandtl number (Pr = 0.015, 0.024 and 0.0321). The results indicate that when the conductive regime is established for a Grashof number Gr = 104, the 2D model is valid and predicts all three-dimensional results with negligible difference. This was not the case in the convective regime (Gr = 105) where the effect of the third direction becomes important, where a 2D-3D difference was seen with about 37 per cent. Also, in most cases, the authors find that the heat absorption phenomena have the opposite effect with respect to the heat generation.

Design/methodology/approach

Numerical results are presented and analyzed in terms of fluid flow, thermal field structures, as well as average Nusselt number profiles over a wide range of dimensionless quantities.

Findings

Grashof number (Gr) (104 and 105), SQ (varied between −500 to 500) and Prandtl number (Pr = 0.015, 0.024 and 0.0321).

Originality/value

The results indicate that when the conductive regime is established for a Grashof number Gr = 104, the 2D model is valid and predicts all three-dimensional results with negligible difference.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 March 2015

Tasawar Hayat, Bilal Ashraf, Sabir Ali Shehzad, A. Alsaedi and N. Bayomi

– The purpose of this paper is to investigate the three-dimensional mixed convection flow of viscoelastic nanofluid induced by an exponentially stretching surface.

200

Abstract

Purpose

The purpose of this paper is to investigate the three-dimensional mixed convection flow of viscoelastic nanofluid induced by an exponentially stretching surface.

Design/methodology/approach

Similarity transformations are utilized to reduce the partial differential equations into the ordinary differential equations. The corresponding non-linear problems are solved by homotopy analysis method.

Findings

The authors found that an increase in thermophoresis and Brownian motion parameter enhance the temperature. Here thermal conductivity of fluid is enhanced due to which higher temperature and thicker thermal boundary layer thickness is obtained.

Practical implications

Heat and mass transfer effects in mixed convection flow over a stretching surface have numerous applications in the polymer technology and metallurgy. Such flows are encountered in metallurgical processes which involve the cooling of continuous strips or filaments by drawing them through a quiescent fluid and that in the process of drawing, these strips are sometimes stretched.

Originality/value

Three-dimensional flows over an exponentially stretching surface are very rare in the literature. Three-dimensional flow of viscoelastic nanofluid due to an exponentially stretching surface is first time investigated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 April 2015

Tasawar Hayat, Bilal Ashraf, Sabir Ali Shehzad and Elbaz Abouelmagd

The purpose of this paper is to analyze the Eyring Powell fluid over an exponentially stretching surface. Heat and mass transfer effects are taken into account with nanoparticles…

Abstract

Purpose

The purpose of this paper is to analyze the Eyring Powell fluid over an exponentially stretching surface. Heat and mass transfer effects are taken into account with nanoparticles.

Design/methodology/approach

Appropriate transformations are employed to reduce the boundary layer partial differential equations into ordinary differential equations. Series solutions of the problem are obtained and impacts of physical parameters on the velocities, temperature and concentration profiles are discussed.

Findings

Numerical values of local Nusselt and Sherwood numbers for all the involved physical parameters are computed and analyzed. A comparative study between the present and previous results is made in a limiting sense. Local Nusselt number −′(0) increases by increasing ε, Pr, λ and N while it decreases for δ, N_{t{, N_{b} and Sc.

Originality/value

This analysis has not been discussed in the literature yet.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 25